Fluorescent Flippers for Mechanosensitive Membrane Probes

نویسندگان

  • Marta Dal Molin
  • Quentin Verolet
  • Adai Colom
  • Romain Letrun
  • Emmanuel Derivery
  • Marcos Gonzalez-Gaitan
  • Eric Vauthey
  • Aurélien Roux
  • Naomi Sakai
  • Stefan Matile
چکیده

In this report, "fluorescent flippers" are introduced to create planarizable push-pull probes with the mechanosensitivity and fluorescence lifetime needed for practical use in biology. Twisted push-pull scaffolds with large and bright dithienothiophenes and their S,S-dioxides as the first "fluorescent flippers" are shown to report on the lateral organization of lipid bilayers with quantum yields above 80% and lifetimes above 4 ns. Their planarization in liquid-ordered (Lo) and solid-ordered (So) membranes results in red shifts in excitation of up to +80 nm that can be transcribed into red shifts in emission of up to +140 nm by Förster resonance energy transfer (FRET). These unique properties are compatible with multidomain imaging in giant unilamellar vesicles (GUVs) and cells by confocal laser scanning or fluorescence lifetime imaging microscopy. Controls indicate that strong push-pull macrodipoles are important, operational probes do not relocate in response to lateral membrane reorganization, and two flippers are indeed needed to "really swim," i.e., achieve high mechanosensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Synthesis of Mixed Oligomers with Thiophenes, Dithienothiophene S,S-Dioxides, Thieno[3,4]pyrazines and 2,1,3-Benzothiadiazoles: Flipper Screening for Mechanosensitive Systems

Monomers with large surface area and high quantum yield, that is fluorescent flippers, have been engineered into twisted push-pull oligomers to create membrane probes with high mechanosensitivity and long fluorescence lifetime. Here, the synthesis and characterization of thieno[3,4]pyrazines and 2,1,3-benzothiadiazoles are described in comparison with the original dithienothiophene S,S-dioxides...

متن کامل

Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface

It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push-pull probes in a monolayer at the ...

متن کامل

Total chemical synthesis and electrophysiological characterization of mechanosensitive channels from Escherichia coli and Mycobacterium tuberculosis.

Total chemical protein synthesis was used to generate multimilligram quantities of the mechanosensitive channel of large conductance from Escherichia coli (Ec-MscL) and Mycobacterium tuberculosis (Tb-MscL). Cysteine residues introduced to allow chemical ligation were masked with cysteine-reactive molecules, resulting in side chain functional groups similar to those of the wild-type protein. Syn...

متن کامل

Headgroup engineering in mechanosensitive membrane probes.

Systematic headgroup engineering yields planarizable push-pull flipper probes that are ready for use in biology - stable, accessible, modifiable -, and affords non-trivial insights into chalcogen-bond mediated mechanophore degradation and fluorescence enhancement.

متن کامل

Properties of the Mechanosensitive Channel MscS Pore Revealed by Tryptophan Scanning Mutagenesis

Bacterial mechanosensitive channels gate when the transmembrane turgor rises to levels that compromise the structural integrity of the cell wall. Gating creates a transient large diameter pore that allows hydrated solutes to pass from the cytoplasm at rates close to those of diffusion. In the closed conformation, the channel limits transmembrane solute movement, even that of protons. In the Msc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2015